

Technical Information

Dosimass Coriolis Flow Measuring System Mass flow measuring system for filling applications

Applications

The dosimass is suitable for use as a mass or volume flowmeter for filling applications

Liquids with the most diverse properties from the following industries can be measured:

- Food and beverage industry
- Cosmetics industry
- Pharmaceutical industry
- Chemical industry
- Petrochemicals

Your benefits

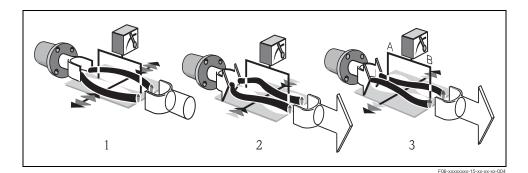
- Small size meets the requirements for installation on rotary and linear filling machines
- Highly accurate
- Easy operation via the Endress+Hauser "Field Tool" operating software:
- Graphic display allows exact analysis and optimization of the batching process
- Complete system documentation can be created with device configuration and batching diagram
- Meets 3-A sanitary standards
- CIP, SIP cleaning as well as external cleaning with aggressive media
- No moving parts

Table of contents

Function and system design	
Measuring principle	
Measuring system	
•	
Input	
Measured variable	
Measuring range	
Operable flow range	
Output	
-	
Output signal	
Signal on alarm	
Low flow cutoff	
Galvanic isolation	
Switching output	
Power supply	
Electrical connections	
Supply voltage	
Power consumption	
Power supply failure	
Potential equalisation	
Cable connection	
Cable specification	
Performance characteristics	
Reference operating conditions	
Max. measured error	
Repeatability	
Influence of medium temperature	
Influence of medium pressure	
1	
Operating conditions: Installation7	
Installation instructions	
Inlet and outlet runs	
System pressure9	
Operating conditions: Environment	
Ambient temperature range	
Storage temperature	
Degree of protection	
Shock resistance	
Vibration resistance	
Electromagnetic compatibility 10	
Operating conditions: Process	
Medium temperature range10	
Medium pressure range10	
Limiting flow10	
Pressure loss	
Mechanical construction	
Design / dimensions	
Weight 13 Material 13	
Material load	

Process connection
User interface
Certificates and approvals13CE mark13Hazardous area approval13Sanitary compatibility13Other standards and guidelines13Pressure measuring device approval14
Accessories15
Documentation15
Ordering information

Function and system design


Measuring principle	The measuring principle is based on the controlled generation of Coriolis forces. These forces are always when both translational and rotational movements are superimposed.			
	$\vec{F}_{C} = 2 \cdot \Delta m (\vec{v} \cdot \vec{\omega})$	\vec{F} = Coriolis force Δm = moved mass $\vec{\omega}$ = angular velocity		

v = radial velocity in the rotating or oscillating system

The amplitude of the Coriolis force depends on the moving mass Δm , its velocity in the system, and thus on the mass flow. Instead of a constant rotating velocity, the Dosimass uses oscillation.

In the sensor, two parallel measuring tubes containing flowing fluid oscillate in antiphase, acting like a tuning fork. The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillations (see illustration):

- At zero flow, in other words when the fluid is at a standstill, the two tubes oscillate in phase (1).
- Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the outlet (3).

The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet.

System balance is ensured by the antiphase oscillation of the two measuring tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Density measurement

The measuring tubes are continuously excited at their resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tubes and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. Resonance frequency is thus a function of fluid density. The microprocessor utilises this relationship to obtain a density signal.

Temperature measurement

The temperature of the measuring tubes is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output.

Measuring system

The measuring system is a compact unit consisting of a sensor and transmitter.

Input

Measured variable

- Mass flow
- Volume flow (calculated from mass flow and density)
- Density
- Fluid temperature (measured with temperature sensors)

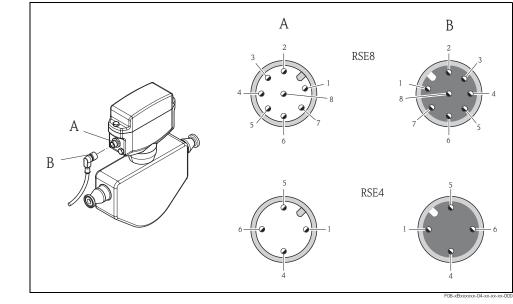
Measuring range

Nominal size (DN)	Range of full scale values (liquids) m_{min} to m_{max}
5/16" (8) 1/2" (15) 1" (25)	0 to 73.5 lb/min (0 to 2000 kg/h) 0 to 238 lb/min (0 to 6500 kg/h) 0 to 660 lb/min (0 to 18000 kg/h)

Recommended full scale v	values:
See information on Page 1	10, ("Limiting flow")

Operable flow range

Greater than 1000:1. Flows above the preset full scale value do not overload the amplifier, i.e. totalized flow values are registered correctly.


Output

Output signal	Pulse output: Passive, max. 30VDC/25mA, pulse value and pulse polarity can be selected, pulse width adjustable (0.05 ms to 1 s).
	Note! The device may only be connected to SELV, PELV or CLASS 2 circuits.
Signal on alarm	Pulse output \rightarrow behavior can be selected Transistor status output not conducting in the event of a fault/notice (depending on setting) or if the power supply fails
Low flow cutoff	Switch point for low flow cutoff selectable.
Galvanic isolation	The power supply and outputs are galvanically isolated from one another.
Switching output	Status output: Passive, max. 30 VDC / 25 mA
	Note! The device may only be connected to SELV, PELV or CLASS 2 circuits.

Power supply

Electrical connections

The electrical connection of the device is established using a Lumberg connector (type RSE8 or RSE4, M12x1).

Wiring diagram

- А Socket at device
- В Cable connector
- (+), power supply (24VDC nominal voltage (20 to 30 VDC), 4.3 W) 1
- (-), power supply (24VDC nominal voltage (20 to 30 VDC), 4.3 W) 4 5
- (+), pulse, status output (max. 30 V)
- (-), pulse output (max. 25 mA) 6 7
 - (-), status output (max. 25 mA)
- 2 Service interface (may not be connected during normal operation)
- Service interface (may not be connected during normal operation) 3
- 8 Service interface (may not be connected during normal operation)

Supply voltage	24VDC nominal voltage (20 to 30 VDC)			
	Note!The power supply may not exceed a maximum short-circuit current of 50 A.The device may only be connected to SELV, PELV or CLASS 2 circuits.			
Power consumption	Max. 4.3 W Switch-on current: max. 1A (< 6 ms)			
Power supply failure	Lasting min. 20 ms.: All sensor and measuring point data remain in the DAT			
Potential equalization	No special measures are necessary for potential equalisation. For devices for the Ex area, see the notes in the Ex-specific supplement to these Operating Instructions.			
Cable connection	Lumberg plug (RSE8 or RSE4, M12x1) for power supply and signal outputs			
Cable specification	Every suitable cable with a temperature specification at least $+68^{\circ}F(20^{\circ})C$ higher than the ambient temperature in the application. We recommend you use a cable with a temperature specification of $+176^{\circ}F(+80^{\circ}C)$.			

Reference operating	Error limits following ISO/DIS 11631:					
conditions		 68° to 86° (20 to 30°C); 30to 60 psi (2 to 4 bar) Calibration systems traced to national norms. 				
		brated under operating co				
	 Density calibra 	tion performed				
Max. measured error	Mass flow:					
	±0.15% o.r. 3 to or	13 ft/s (1 to 4 m/s)				
		ooint stability / measured	value) x 100]% o.r.			
	0° +5% + [(zoro poi	nt stability / measured va	$(110) \times 100\% \text{ or}$			
	±3% ± [(2610 poi	int stability / inteasured va	ilde) x 100j/8 0.1.			
	o.r. = of reading	o.r. = of reading				
	Zero point stabilit	Zero point stability:				
	Nominal	Maximum full scale val				
	size (DN)	lb/min (kg/h)	lb/min (k	kg∕h)		
	5/16" (8)	73.5 (2000)	0.007 (0	.20)		
	1/2" (15)	238 (6500)	0.024 (0	.65)		
	1" (25)	660 (18,000)	0.066 (1	1.8)		
	Calculation example: Give that: Dosimass 1/2" (DN 15), flow = 48 lb/min (1300 kg/h), measured error: $\pm 0.3\% \pm$ [(zero point stability / measured value) x 100]% o.r.					
	Maccurad array $\pm 0.3\% \pm \frac{0.024 \text{ lb/min}}{48 \text{ lb/min}} \times 100\% = \pm 0.35$					
	Measured error –	\rightarrow $\pm 0.3\% \pm \frac{0.65 \text{ kg}}{1300 \text{ kg}}$		35		
Repeatability						
	Dosing time [s]	Standard deviation [%]	Confidence limit of the mean 3s = 99.7% [%]			
	≥ 0.75	0.2	± 0.6			
		1	1	1		

Performance characteristics

Influence of medium temperature	When there is a difference between the temperature for zero point adjustment and the process temperature, the typical measured error of the Promass sensor is $\pm 0.0003\%$ of the full scale value / °C.
Influence of medium pressure	The effect of a difference in pressure between the calibration pressure and the process pressure on the measured error for mass flow is negligible.

0.1

0.05

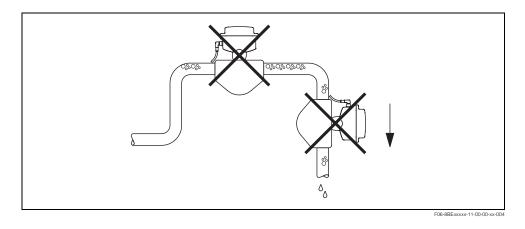
± 0.3

 ± 0.15

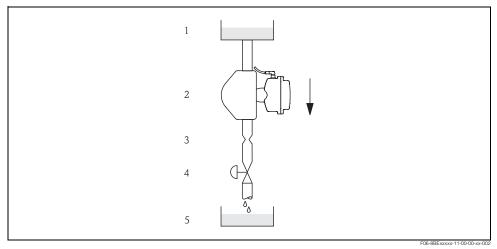
≥ 1.5

≥ 3.0

Operating conditions: Installation


Installation instructions	Note the following points:
	• No special measures such as supports are necessary. External forces are absorbed by the construction of the
	instrument.
	• The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring
	system is not influenced by plant vibrations.
	• No special precautions need to be taken for fittings which create turbulence (valves, elbows, T-pieces, etc.).

as long as no cavitation occurs.

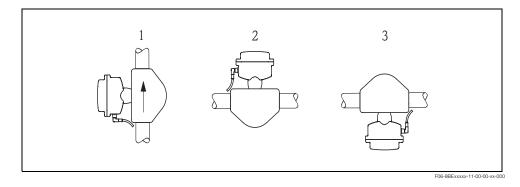

Mounting location

Correct measurement is only possible if the pipe is filled. For this reason, avoid the following mounting locations in the pipe:

- At the highest point of the pipeline. Risk of air accumulating.
- Directly upstream of a free pipe outlet in a down pipe.

The following proposed installation, however, permits installation in an open down pipe. Pipe restrictors or the use of an orifice with a cross-section smaller than the nominal diameter prevent the pipe from running empty during measurement.

Installation in a down pipe (e.g. for batching applications)

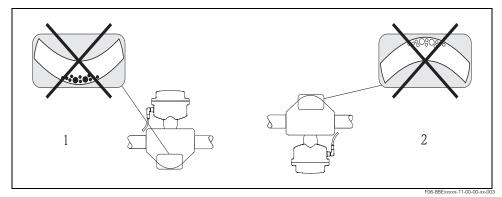

1 =Supply tank, 2 =Sensor, 3 =Orifice plate, pipe restriction, 4 =Valve, 5 =Batching tank

Dosimass / Nominal size (DN)	5/16" (8)	1/2" (15)	1" (25)
\varnothing Orifice plate, pipe restriction	1/4" (6 mm)	3/8" (10 mm)	1/2" (14 mm)

Orientation

Vertical:

Recommended orientation with upward direction of flow. When fluid is not flowing, entrained solids will sink down and gases will rise away from the measuring tube. The measuring tubes can be completely drained and protected against solids build-up.



Horizontal:

The measuring tubes of the Dosimass must be horizontal and beside each other. When installation is correct, the transmitter housing is above or below the pipe (View 2, 3). Always avoid having the transmitter housing in a lateral position.

Caution!

The measuring tubes of Dosimass are slightly curved. The position of the sensor, therefore, has to be matched to the fluid properties when the sensor is installed horizontally.

1 Not suitable for fluids with entrained solids. Risk of solids accumulating.

2 Not suitable for outgassing fluids. Risk of air accumulating.

Fluid temperature

Caution!

Hot surface temperatures can arise at the housing of the device if fluid temperatures are >158°F (70°C).

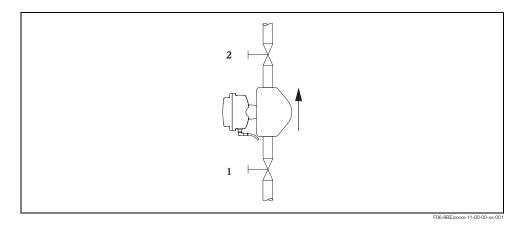
In order to ensure that the maximum permissible ambient temperature for the transmitter (-4 to +140°F / -20 to +60°C) is not exceeded, we recommend the following orientations: (refer to the graphic at the top of the page)

High fluid temperature Vertical piping: installation in accordance with View 1 Horizontal piping: installation in accordance with View 3

Low fluid temperature

Vertical piping: installation in accordance with View 1 Horizontal piping: installation in accordance with View 2

Zero point adjustment


Experience shows that the zero point adjustment is advisable only in special cases:

- To achieve highest measuring accuracy also with very small flow rates.
- Under extreme process or operating conditions (e.g. very high process temperatures or very high-viscosity fluids).

A zero point adjustment can be performed only with fluids that contain no gas or solid content.

A zero point adjustment is performed with the measuring tubes completely filled and at zero flow (v = 0 ft/s). This can be achieved, for example, with shut-off valves upstream and/or downstream of the sensor or by using existing valves and gates.

- Normal operation \rightarrow values 1 and 2 open
- Zero point adjustment with pump pressure \rightarrow valve 1 open / valve 2 closed
- Zero point adjustment without pump pressure \rightarrow valve 1 closed / valve 2 open

Heating, heating insulation

Some fluids require suitable measures to avoid loss of heat or heat supply at the sensor. A wide range of materials can be used to provide the required thermal insulation. Heating can be electric, e.g. with electric band heaters, or by means of hot water or steam pipes made of copper.

Caution!

Risk of electronics overheating!

- Consequently, make sure that the adapter between sensor and transmitter always remains free of insulating material. Note that a certain orientation might be required, depending on the fluid temperature (→ Page 8 "Fluid temperature" Section).
- For information on the permitted temperature ranges, see Page 10, "Ambient temperature range" Section.

Inlet and outlet runs	There are no installation requirements regarding inlet and outlet runs.		
System pressure	It is important to ensure that cavitation does not occur because it would influence the oscillation of the measuring tube. No special measures need to be taken for fluids which have properties similar to water under normal conditions. In the case of liquids with a low boiling point (hydrocarbons, solvents, liquefied gases) or in suction lines, it is important to ensure that pressure does not drop below the vapour pressure and that the liquid does not start to boil. It is also important to ensure that the gases that occur naturally in many liquids do not outgas. Such effects can be prevented when system pressure is sufficiently high.		
	Consequently, it is generally best to install the sensor: • downstream from pumps (no danger of vacuum),		

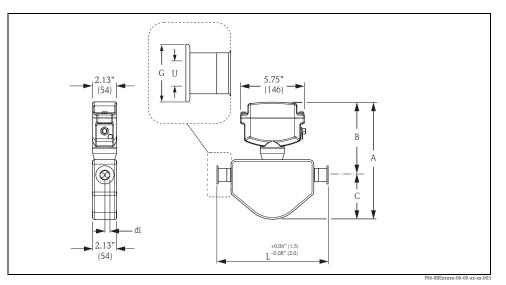
• at the lowest point in an ascending pipeline.

Ambient temperature range	-4° to +140°F (-20 to +60°C) sensor, transmitter Install the device at a shady location. Avoid direct sunlight, particularly in warm climatic regions.
Storage temperature	-40° to +176°F (-40 to +80°C), preferably +68°F (+20°C)
Degree of protection	Standard: NEMA 4X (IP 67) for transmitter and sensor
Shock resistance	In accordance with IEC 68-2-31
Vibration resistance	In accordance with IEC 68-2-31
Electromagnetic compatibility	In accordance with EN 61326 (IEC 1326)

Operating conditions: Environment

Operating conditions: Process

Medium temperature range	Sensor: • -40° to +257°F (-40 to +125°C)					
	Seals: • No internal seals					
Medium pressure range	Max. 1450 psi (100 bar), depending on process connection					
Limiting flow	See information on Page 4, "Measuring range"					
	 Select nominal diameter by optimising between required flow range and permissible pressure loss. See Page 4, "Measuring range" Section for a list of maximum possible full scale values. The minimum recommended full scale value is approx. 1/20 of the maximum full scale value. In most applications, 20 to 50% of the maximum full scale value can be considered ideal. Select a lower full scale value for abrasive substances such as fluids with entrained solids, flow velocity < 3 ft/s (1 m/s). 					


Pressure loss	Pressure loss depends on the fluid properties, nominal diameter and the flow rate. Consult Endress+Hauser for Applicator PC software to determine pressure loss.
	All important instrument data is contained in the "Applicator" software program in order to optimize the design of the measuring system. The software is used for the following calculations:
	 Nominal diameter of the sensor with fluid characteristics such as viscosity, density, etc. Pressure loss downstream of the measuring point. Converting mass flow to volumetric flow, etc. Simultaneous display fo various meter sizes. Determining measuring ranges.
	The Applicator runs on any IBM compatible PC with Windows operating software.

F06-666.xxxxx 05-xx+xx-001

Mechanical construction

Design / dimensions

Dosimass dimensions: Tri-Clamp connections

Dosimass dimensions: Tri-Clamp connections

1/2" Tri-Clamp: 316L SS								
Size (DN)	Clamp	A in. (mm)	B in. (mm)	C in. (mm)	G in. (mm)	L in. (mm)	U in. (mm)	di in. (mm)
5/16" (8)	1/2"	9.96 (253)	6.30 (160)	3.66 (93)	0.98 (25.0)	9.02 (229)	0.37 (9.5)	0.21 (5.35)
1/2" (15)	1/2"	10.5 (267)	6.38 (162)	4.13 (105)	0.98 (25.0)	10.7 (273)	0.37 (9.5)	0.33 (8.30)
3A version also available (Ra \leq 32 μin / 0.8 μm / 150 grit)								

3/4" Tri-Clamp: 316L SS								
Size (DN)	Clamp	А	В	С	G	L	U	di
5/16" (8)	3/4"	9.96 (253)	6.30 (160)	3.66 (93)	0.98 (25.0)	9.02 (229)	0.63 (16)	0.21 (5.35)
1/2" (15)	3/4"	10.5 (267)	6.38 (162)	4.13 (105)	0.98 (25.0)	10.7 (273)	0.63 (16)	0.33 (8.30)
3A version also available (Ra \leq 32µin / 0.8 µm / 150 grit)								

1" Tri-Clamp: 316L SS								
Size (DN)	Clamp	А	В	С	G	L	U	di
5/16" (8)	1"	9.96 (253)	6.30 (160)	3.66 (93)	1.98 (50.4)	9.02 (229)	0.87 (22.1)	0.21 (5.35)
1/2" (15)	1"	10.5 (267)	6.38 (162)	4.13 (105)	1.98 (50.4)	10.7 (273)	0.87 (22.1)	0.33 (8.30)
1" (25)	1"	10.7 (273)	6.57 (167)	4.17 (106)	1.98 (50.4)	12.8 (324)	0.87 (22.1)	0.47 (12.0)
3A version also available (Ra \leq 32 μin / 0.8 μm / 150 grit)								

Note:

Other process connections are available from Endress+Hauser; including DIN 11851 Sanitary, DIN 11864-1 Threaded joint, ISO 2853 Threaded joint and SMS 1145 Sanitary. Please consult factory.

Weight	Dosimass / Size (DN)	5/16" (8)	1/2" (15)	1" (25)			
	Weight in lbs (kg)	7.7 (3.5)	8.8 (4.0)	9.9 (4.5)			
Material	Transmitter housing: 304 SS						
	Sensor housing: Acid and alkali-resistant outer surface; stainless steel 304						
	 Process connection: Threaded joint DIN 11864-1 → stainless steel 316L Sanitary connection DIN 11851 / SMS 1145 → stainless steel 316L Threaded joint ISO 2853 / DIN 11864-1 → stainless steel 316L Tri-Clamp → stainless steel 316L 						
	Measuring tubes: Stainless steel 904L						
	Seals: Welded process connections	without internal s	eals				
Material load	Tri-Clamp process connection						
	The load limit is defined exc included in the scope of deliv	, ,	terial properties	of the outer clan	np used. This clamp is	s not	
Process connection	Sanitary connections: Tri-Cla	amp, threaded join	ts (DIN 11851,	, SMS 1145, ISO	2853, DIN 11864-1)		

User interface

Display elements	Dosimass does not have a display or display elements.
Remote operation	Operation takes place via the "FieldTool" configuration and service program from Endress+Hauser. This can be used to configure functions and read off measured values.

Certificates and approvals

CE mark	The measuring system is in conformity with the statutory requirements of the EC Directives. Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.
Hazardous approvals	Information about currently available Ex versions (FM, CSA, ATEX, etc.) can be supplied by your Endress+Hauser Sales Center on request. All explosion protection data are given in a separate documentation which is available upon request.
Sanitary compatibility	Meets 3-A sanitary standards
Other standards and guidelines	EN 60529: Degrees of protection by housing (IP code)
	EN 61010-1: Protection Measures for Electrical Equipment for Measurement, Control, Regulation and Laboratory Procedures.
	EN 61326 (IEC 1326): Electromagnetic compatibility (EMC requirements)

	EN 61000-4-3 (IEC 1000-4-3) Operating behavior A with screened connecting cable possible (screening placed as short as possible on both sides), otherwise operating behavior B.
	NAMUR NE 21: Association for Standards for Control and Regulation in the Chemical Industry
Pressure measuring device approval	All Dosimass devices correspond to Article 3(3) of the EC Directive 97/23/EC (Pressure Equipment Directive) and have been designed and manufactured according to good engineering practice.

Accessories

Various accessories, which can be ordered separately from Endress+Hauser, are available for the transmitter.

Documentation

- Dosimass Operating Instructions (BA097D/06/en)
 Supplementary documentation on Hazardous area ratings: FM, CSA, ATEX (consult factory)

Ordering information

	010 020 030 040 050 060 070 080 090 100
Dosim	ass 8BE
Ν	ominal diameter
0	3 5/16" (8), 73.5 lb/min (2000 kg/h) max. measuring range
1	
2	
	easuring system
A	904L SS measuring tubes
B	904L SS measuring tubes, 3.1B wetted parts (not for SMS)
	ocess connections `S 1" Tri-clamp. 316L SS
	 ΓA 1" Tri-clamp, 316L SS, 0.32μ inch (150 grit), 3-A version VW 3/4" Tri-clamp, 316L SS
	VA $3/4$ Tri-clamp, 316L SS 0.32μ inch (150 grit), 3-A version
-	JW 1/2" Tri-clamp, 316L SS
	JA $1/2$ " Tri-clamp, 316L SS, 0.32 μ inch (150 grit), 3-A version
	ther connections available, please consult factory
030 T	
А	No special test or treatment
В	Pressure tested (2.3 certificate)
С	Oil and fat free wetted surface
D	Oil and fat free wetted surface, pressure tested (2.3 certificate)
	alibration
0	Without calibration (\pm 5% of rate)
A	0.3% calibration with confirmation
В	0.15% calibration with protocol
	oprovals
AG	For use in nonhazardous areas FM/CSA general purpose
H	ATEX II 3G Eex n IIC
	otection type
B	NEMA 4X (IP 67), compact SS housing
-	able entry
1	Lumberg RSE8 socket
2	Lumberg RSE4 socket
080 P	ower supply
1	20 to 30 VDC
090 Se	
A	Standard software
100 0	ante d'income

- 100 Outputs / inputs 1 Pulse, max. 10 kHz and status, passive 2 Pulse, max. 10 kHz, passive

United States

Endress+Hauser, Inc. 2350 Endress Place Greenwood, IN 46143 Tel. 317-535-7138 Sales 888-ENDRESS Service 800-642-8737 fax 317-535-8498 inquiry@us.endress.com www.us.endress.com

Canada

Endress+Hauser Canada 1075 Sutton Drive Burlington, ON L7L 528 Tel. 905-681-9292 800-668-3199 Fax 905-681-9444 info@ca.endress.com

www.ca.endress.com

Mexico

Endress+Hauser, México, S.A. de C.V. Fernando Montes de Oca 21 Edificio A Piso 3 Fracc. Industrial San Nicolás 54030. Tlalnepantla de Baz Estado de México México Tel: +52 55 5321 2080 Fax +52 55 5321 2090 eh.mexico@mx.endress.com

TI 065D/24/ae/07.07 © 2007 Endress+Hauser, INC.

People for Process Automation